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Chapter 1

Uncertainty in physics and the usual
methods of handling it

“In almost all circumstances, and at all times,

we find ourselves in a state of uncertainty.

Uncertainty in every sense.

Uncertainty about actual situations, past and present . ..
Uncertainty in foresight: this would not be eliminated

or diminished even if we accepted, in its most absolute form,

the principle of determinism; in any case, this is no longer in fashion.
Uncertainty in the face of decisions: more than ever in this case ...
Even in the field of tautology (i.e of what is true or false by mere
definition, independently of any contingent circumstances) we always
find ourselves in a state of uncertainty ... (for instance,

of what is the seventh, or billionth, decimal place of w ... ) ... ”
(Bruno de Finetti)

1.1 Uncertainty in physics

It is fairly well accepted among physicists that any conclusion which results from a measurement
is affected by a certain degree of uncertainty. Let us remember briefly the reasons which prevent
us from reaching certain statements. Figure 1.1 sketches the activity of physicists (or of any other
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Figure 1.1: From observations to hypotheses. The link between value of a quantity and theory is a
reminder that sometimes a physics quantity has meaning only within a given theory or model.




Uncertainty in physics and the usual methods of handling it

scientist). From experimental data one wishes to determine the value of a given quantity, or to
establish which theory describes the observed phenomena better. Although they are often seen
as separate, both tasks may be viewed as two sides of the same process: going from observations
to hypotheses. In fact, they can be stated in the following terms.

A: Which values are (more) compatible with the definition of the measurand, under the
condition that certain numbers have been observed on instruments (and subordinated to
all the available knowledge about the instrument and the measurand)?

B: Which theory is (more) compatible with the observed phenomena (and subordinated to
the credibility of the theory, based also on aesthetics and simplicity arguments)?

The only difference between the two processes is that in the first the number of hypotheses is
virtually infinite (the quantities are usually supposed to assume continuous values), while in the
second it is discrete and usually small.

The reasons why it is impossible to reach the ideal condition of certain knowledge, i.e. only
one of the many hypotheses is considered to be true and all the others false, may be summarized
in the following, well-understood, scheme.

A: As far as the determination of the value of a quantity is concerned, one says that “uncer-
tainty is due to measurement errors”.

B: In the case of a theory, we can distinguish two subcases:

(B1) The law is probabilistic, i.e. the observations are not just a logical consequence of
the theory. For example, tossing a regular coin, the two sequences of heads and tails
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have the same probability of being observed (as any other sequence). Hence, there is
no way of reaching a firm conclusion about the regularity of the coin after an observed
sequence of any particular length.!

(B2) The law is deterministic. But this property is only valid in principle, as can easily be
understood. In fact, in all cases the actual observations also depend on many other
factors external to the theory, such as initial and boundary conditions, influence
factors, experimental errors, etc. All unavoidable uncertainties on these factors mean
that the link between theory and observables is of a probabilistic nature in this case
too.

1.2 True value, error and uncertainty

Let us start with case A. A first objection would be “What does it mean that uncertainties are
due to errors? Isn’t this just tautology?”. Well, the nouns ‘error’ and ‘uncertainty’, although cur-
rently used almost as synonyms, are related to different concepts. This is a first hint that in this
subject there is neither uniformity of language, nor of methods. For this reason the metrological
organizations have recently made great efforts to bring some order into the field [1, 2, 3, 4, 5.

'But after observation of the first sequence one would strongly suspect that the coin had two heads, if one had
no means of directly checking the coin. The concept of probability will be used, in fact, to quantify the degree of
such suspicion.
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1.3 Sources of measurement uncertainty

In particular, the International Organization for Standardization (ISO) has published a “Guide
to the expression of uncertainty in measurement” [3], containing definitions, recommendations
and practical examples. Consulting the ‘ISO Guide’ we find the following definitions.

e Uncertainty: “a parameter, associated with the result of a measurement, that characterizes
the dispersion of the values that could reasonably be attributed to the measurement.”

e Error: “the result of a measurement minus a true value of the measurand.”

One has to note the following.

e The ISO definition of uncertainty defines the concept; as far as the operative definition
is concerned, they recommend the ‘standard uncertainty’, i.e. the standard deviation (o)
of the possible values that the measurand may assume (each value is weighted with its
‘degree of belief” in a way that will become clear later).

e It is clear that the error is usually unknown, as follows from the definition.

e The use of the article ‘a’ (instead of ‘the’) when referring to ‘true value’ is intentional, and
rather subtle.

Also the ISO definition of true value differs from that of standard textbooks. One finds, in
fact:

e true value: “a value compatible with the definition of a given particular quantity.”

This definition may seem vague, but it is more practical and pragmatic, and of more general
use, than “the value obtained after an infinite series of measurements performed under the same
conditions with an instrument not affected by systematic errors.” For instance, it holds also for
quantities for which it is not easy to repeat the measurements, and even for those cases in which
it makes no sense to speak about repeated measurements under the same conditions. The use of
the indefinite article in conjunction with true value can be understood by considering the first
item on the list in the next section.

1.3 Sources of measurement uncertainty
It is worth reporting the sources of uncertainty in measurement as listed by the ISO Guide:

“1 incomplete definition of the measurand;
2 imperfect realization of the definition of the measurand;

3 mon-representative sampling — the sample measured may not represent the defined
measurand;

4 inadequate knowledge of the effects of environmental conditions on the
measurement, or imperfect measurement of environmental conditions;

personal bias in reading analogue instruments;
finite instrument resolution or discrimination threshold;

inexact values of measurement standards and reference materials;

X N D W™

inexact values of constants and other parameters obtained from external sources
and used in the data-reduction algorithm;
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Uncertainty in physics and the usual methods of handling it

9 approximations and assumptions incorporated in the measurement method and
procedure;

10 wariations in repeated observations of the measurand under apparently identical
conditions.”

These do not need to be commented upon. Let us just give examples of the first two sources.

1. If one has to measure the gravitational acceleration g at sea level, without specifying
the precise location on the earth’s surface, there will be a source of uncertainty because
many different — even though ‘intrinsically very precise’ — results are consistent with the
definition of the measurand.?

2. The magnetic moment of a neutron is, in contrast, an unambiguous definition, but there
is the experimental problem of performing experiments on isolated neutrons.

In terms of the usual jargon, one may say that sources 1 9 are related to systematic effects and
10 to ‘statistical effects’. Some caution is necessary regarding the sharp separation of the sources,
which is clearly somehow artificial. In particular, all sources 1-9 may contribute to 10, because
they each depend upon the precise meaning of the clause “under apparently identical conditions”
(one should talk, more precisely, about ‘repeatability conditions’[3]). In other words, if the
various effects change during the time of measurement, without any possibility of monitoring
them, they contribute to the random error.

1.4 Usual handling of measurement uncertainties

The present situation concerning the treatment of measurement uncertainties can be summarized
as follows.

e Uncertainties due to statistical errors are currently treated using the frequentistic concept
of ‘confidence interval’, although

— there are well known cases — of great relevance in frontier physics — in which the
approach is not applicable (e.g. small number of observed events, or measurement
close to the edge of the physical region);

— the procedure is rather unnatural, and in fact the interpretation of the results is
unconsciously subjective (as will be discussed later).

e There is no satisfactory theory or model to treat uncertainties due to systematic errors®

consistently. Only ad hoc prescriptions can be found in the literature and in practice
(“my supervisor says ... ”): “add them linearly”; “add them linearly if ..., else add
them quadratically”; “don’t add them at all”.* The fashion at the moment is to add them
quadratically if they are considered to be independent, or to build a covariance matrix of

2Tt is then clear that the definition of true value implying an indefinite series of measurements with ideal
instrumentation gives the illusion that the true value is unique. The ISO definition, instead, takes into account
the fact that measurements are performed under real conditions and can be accompanied by all the sources of
uncertainty in the above list.

3To be more precise one should specify ‘of unknown size’, since an accurately assessed systematic error does
not yield uncertainty, but only a correction to the raw result.

4By the way, it is a good and recommended practice to provide the complete list of contributions to the overall
uncertainty [3]; but it is also clear that, at some stage, the producer or the user of the result has to combine the
uncertainty to form his idea about the interval in which the quantity of interest is believed to lie.
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1.5 Probability of observables versus probability of true values

statistical and systematic contribution to treat the general case. In my opinion, besides all
the theoretically motivated excuses for justifying this praxis, there is simply the reluctance
of experimentalists to combine linearly 10, 20 or more contributions to a global uncertainty,
as the (out of fashion) ‘theory’ of maximum bounds would require.’

The problem of interpretation will be treated in the next section. For the moment, let us see
why the use of standard propagation of uncertainty, namely

oy \?
2 _ 2 v .
oY) = ; <8XZ-> 0“(X;) + correlation terms , (1.1)
is not justified (especially if contributions due to systematic effects are included). This formula is
derived from the rules of probability distributions, making use of linearization (a usually reason-
able approximation for routine applications). This leads to theoretical and practical problems.

e X, and Y should have the meaning of random variables.

e In the case of systematic effects, how do we evaluate the input quantities o(X;) entering
in the formula in a way which is consistent with their meaning as standard deviations?

e How do we properly take into account correlations (assuming we have solved the previous
questions)?

It is very interesting to go to your favourite textbook and see how ‘error propagation’ is intro-
duced. You will realize that some formulae are developed for random quantities, making use
of linear approximations, and then suddenly they are used for physics quantities without any
justification. A typical example is measuring a velocity v+ o(v) from a distance s + o (s) and a
time interval t + o (¢). It is really a challenge to go from the uncertainty on s and ¢ to that of v
without considering s, ¢t and v as random variables, and to avoid thinking of the final result as
a probabilistic statement on the velocity. Also in this case, an intuitive interpretation conflicts
with standard probability theory.

1.5 Probability of observables versus probability of true values

The criticism about the inconsistent interpretation of results may look like a philosophical quib-
ble, but it is, in my opinion, a crucial point which needs to be clarified. Let us consider the
example of n independent measurements of the same quantity under identical conditions (with
n large enough to simplify the problem, and neglecting systematic effects). We can evaluate the
arithmetic average T and the standard deviation o. The result on the true value p is

p=7+ (1.2)

sl

5And in fact, one can see that when there are only two or three contributions to the ‘systematic error’, there
are still people who prefer to add them linearly.

5Some others, including some old lecture notes of mine, try to convince the reader that the propagation is
applied to the observables, in a very complicated and artificial way. Then, later, as in the ‘game of the three
cards’ proposed by professional cheaters in the street, one uses the same formulae for physics quantities, hoping
that the students do not notice the logical gap.
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Uncertainty in physics and the usual methods of handling it

The reader will have no difficulty in admitting that the large majority of people interpret (1.2)

as if it were”

<pu<TA+ \%):68%. (1.3)

7;

However, conventional statistics says only that®

o

P(u \F sXspt+ oo
a probabilistic statement about X, given u, o and n. Probabilistic statements concerning pu
are not foreseen by the theory (“u is a constant of unknown value™), although this is what we
are, intuitively, looking for: Having observed the effect T we are interested in stating something
about the possible true value responsible for it. In fact, when we do an experiment, we want to
increase our knowledge about p and, consciously or not, we want to know which values are more
or less probable. A statement concerning the probability that an observed value falls within a
certain interval around p is meaningless if it cannot be turned into an expression which states
the quality of the knowledge about pu itself. Since the usual probability theory does not help,
the probability inversion is performed intuitively. In routine cases it usually works, but there
are cases in which it fails (see Section 1.7).

) = 68%, (1.4)

1.6 Probability of the causes

Generally speaking, what is missing in the usual theory of probability is the crucial concept of
probability of hypotheses and, in particular, probability of causes: “the essential problem of the
experimental method” (Poincaré):

“I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance
that he turns up the king? It is 1/8. This is a problem of the probability of effects. I play
with a gentleman whom I do not know. He has dealt ten times, and he has turned the king
up six times. What is the chance that he is a sharper? This is a problem in the probability
of causes. It may be said that it is the essential problem of the experimental method” [6].

. the laws are known to us by the observed effects. Trying to deduct from the effects the
laws which are the causes, it is solving a problem of probability of causes” [7].

A theory of probability which does not consider probabilities of hypothesis is unnatural and
prevents transparent and consistent statements about the causes which may have produced the
observed effects from being assessed.

"There are also those who express the result, making the trivial mistake of saying “this means that, if I repeat
the experiment a great number of times, then I will find that in roughly 68% of the cases the observed average will
be in the interval [T — o /+/n, T+ c//n]”. (Besides the interpretation problem, there is a missing factor of v/2
in the width of the interval ... )

8The capital letter to indicate the average appearing in (1.4) is used because here this symbol stands for a
random variable, while in (1.3) it indicated a realization of it. For the Greek symbols this distinction is not made,
but the different role should be evident from the context.

9Tt is worth noting the paradoxical inversion of role between p, about which we are in a state of uncertainty,
considered to be a constant, and the observation Z, which has a certain value and which is instead considered a
random quantity. This distorted way of thinking produces the statements to which we are used, such as speaking
of “uncertainty (or error) on the observed number”: If one observes 10 on a scaler, there is no uncertainty on this
number, but on the quantity which we try to infer from the observation (e.g. A of a Poisson distribution, or a
rate).
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1.7 Unsuitability of confidence intervals

1.7 Unsuitability of confidence intervals

According to the standard theory of probability, statement (1.3) is nonsense, and, in fact, good
frequentistic books do not include it. They speak instead about ‘confidence intervals’, which have
a completely different interpretation [that of (1.4)], although several books and many teachers
suggest an interpretation of these intervals as if they were probabilistic statements on the true
values, like (1.3). But it seems to me that it is practically impossible, even for those who are
fully aware of the frequentistic theory, to avoid misleading conclusions. This opinion is well
stated by Howson and Urbach in a paper to Nature [8]:

“The statement that such-and-such is a 95% confidence interval for p seems objective. But
what does it say? It may be imagined that a 95% confidence interval corresponds to a 0.95
probability that the unknown parameter lies in the confidence range. But in the classical
approach, p is not a random variable, and so has no probability. Nevertheless, statisticians
regularly say that one can be ‘95% confident’ that the parameter lies in the confidence
interval. They never say why.”

The origin of the problem goes directly to the underlying concept of probability. The frequen-
tistic concept of confidence interval is, in fact, a kind of artificial invention to characterize the
uncertainty consistently with the frequency-based definition of probability. But, unfortunately
— as a matter of fact — this attempt to classify the state of uncertainty (on the true value) trying
to avoid the concept of probability of hypotheses produces misinterpretation. People tend to
turn arbitrarily (1.4) into (1.3) with an intuitive reasoning that I like to paraphrase as ‘the dog
and the hunter’: We know that a dog has a 50% probability of being 100 m from the hunter; if
we observe the dog, what can we say about the hunter? The terms of the analogy are clear:

hunter <+ truevalue

dog <« observable.

The intuitive and reasonable answer is “The hunter is, with 50% probability, within 100 m of
the position of the dog.” But it is easy to understand that this conclusion is based on the tacit
assumption that 1) the hunter can be anywhere around the dog; 2) the dog has no preferred
direction of arrival at the point where we observe him. Any deviation from this simple scheme
invalidates the picture on which the inversion of probability (1.4) — (1.3) is based. Let us look
at some examples.

Example 1: Measurement at the edge of a physical region.
An experiment, planned to measure the electron-neutrino mass with a resolution of o =
2eV/ ? (independent of the mass, for simplicity, see Fig. 1.2), finds a value of —4eV/ ?
(i.e. this value comes out of the analysis of real data treated in exactly the same way as
that of simulated data, for which a 2eV /¢? resolution was found).

What can we say about m,?
m, = —4+2eV/c* ?

P(—6eV/c2 <m, < -2 eV/c2) =68% ?
P(m, <0eV/c?) =98% ?

No physicist would sign a statement which sounded like he was 98% sure of having found
a negative mass!
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Figure 1.2: Negative neutrino mass?
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Figure 1.3: Case of highly asymmetric expectation on the physics quantity.

Example 2: Non-flat distribution of a physical quantity.

Let us take a quantity p that we know, from previous knowledge, to be distributed as
in Fig. 1.3. It may be, for example, the energy of bremsstrahlung photons or of cosmic
rays. We know that an observable value X will be normally distributed around the true
value u, independently of the value of u. We have performed a measurement and obtained
x = 1.1, in arbitrary units. What can we say about the true value p that has caused this
observation? Also in this case the formal definition of the confidence interval does not
work. Intuitively, we feel that there is more chance that p is on the left side of (1.1) than
on the right side. In the jargon of the experimentalists, “there are more migrations from
left to right than from right to left”.

Example 3: High-momentum track in a magnetic spectrometer.
The previous examples deviate from the simple dog—hunter picture only because of an
asymmetric possible position of the ‘hunter’. The case of a very-high-momentum track in
a central detector of a high-energy physics (HEP) experiment involves asymmetric response
of a detector for almost straight tracks and non-uniform momentum distribution of charged
particles produced in the collisions. Also in this case the simple inversion scheme does not
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1.8 Misunderstandings caused by the standard paradigm of hypothesis tests

work.

To sum up the last two sections, we can say that intuitive inversion of probability
PL.<X<..)=P(...<p<...), (1.5)

besides being theoretically unjustifiable, yields results which are numerically correct only in the
case of symmetric problems.

1.8 Misunderstandings caused by the standard paradigm of
hypothesis tests

Similar problems of interpretation appear in the usual methods used to test hypotheses. 1
will briefly outline the standard procedure and then give some examples to show the kind of
paradoxical conclusions that one can reach.

A frequentistic hypothesis test follows the scheme outlined below (see Fig. 1.4). 10

1. Formulate a hypothesis H,.

2. Choose a test variable 6 of which the probability density function f(0|H,) is known
(analytically or numerically) for a given H..

3. Choose an interval [0, 02] such that there is high probability that € falls inside the interval:
PH1<0<0)=1-q, (1.6)
with « typically equal to 1% or 5%.
4. Perform an experiment, obtaining 6 = 6,,.
5. Draw the following conclusions :

e if 1 <6, <Oy = H, accepted;

e otherwise = H, rejected with a significance level a.

The usual justification for the procedure is that the probability « is so low that it is practically
impossible for the test variable to fall outside the interval. Then, if this event happens, we have
good reason to reject the hypothesis.

One can recognize behind this reasoning a revised version of the classical ‘proof by contra-
diction’ (see, e.g., Ref. [10]). In standard dialectics, one assumes a hypothesis to be true and
looks for a logical consequence which is manifestly false in order to reject the hypothesis. The
slight difference is that in the hypothesis test scheme, the false consequence is replaced by an
improbable one. The argument may look convincing, but it has no grounds. In order to analyse
the problem well, we need to review the logic of uncertainty. For the moment a few examples
are enough to indicate that there is something troublesome behind the procedure.

Y0 At present,P-values’ (or ‘significance probabilities’) are also “used in place of hypothesis tests as a means of
giving more information about the relationship between the data and the hypothesis than does a simple reject/do
not reject decision” [9]. They consist in giving the probability of the ‘tail(s)’, as also usually done in HEP, although
the name ‘P-values’ has not yet entered our lexicon. Anyhow, they produce the same interpretation problems of
the hypothesis test paradigm (see also example 8 of next section).
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Figure 1.4: Hypothesis test scheme in the frequentistic approach.
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Figure 1.5: Would you accept this scheme to test hypotheses?

Example 4: Choosing the rejection region in the middle of the distribution.
Imagine choosing an interval [0}, 03] around the expected value of 6 (or around the mode)
such that

PO} <0<65) =a, (1.7)

with a small (see Fig. 1.5). We can then reverse the test, and reject the hypothesis if
the measured 6,, is inside the interval. This strategy is clearly unacceptable, indicating
that the rejection decision cannot be based on the argument of practically impossible
observations (smallness of «).

One may object that the reason is not only the small probability of the rejection region, but
also its distance from the expected value. Figure 1.6 is an example against this objection.
Although the situation is not as extreme as that depicted in Fig. 1.5, one would need a
certain amount of courage to say that the H, is rejected if the test variable falls by chance
in ‘the bad region’.

Example 5: Has the student made a mistake?
A teacher gives to each student an individual sample of 300 random numbers, uniformly
distributed between 0 and 1. The students are asked to calculate the arithmetic average.
The prevision!'! of the teacher can be quantified with

E[Xs00] = % (1.8)

o [X300] = L-Lzo.ow, (1.9)

V12 /300

"By prevision I mean, following [11], a probabilistic ‘prediction’, which corresponds to what is usually known
as expectation value (see Section 5.2.2).
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Figure 1.6: Would you accept this scheme to test hypotheses?

with the random variable X309 normally distributed because of the central limit theorem.
This means that there is 99% probability that an average will come out in the interval
0.5 + (2.6 x 0.017):

P(0.456 < X300 < 0.544) = 99% . (1.10)

Imagine that a student obtains an average outside the above interval (e.g. T = 0.550).
The teacher may be interested in the probability that the student has made a mistake (for
example, he has to decide if it is worthwhile checking the calculation in detail). Applying
the standard methods one draws the conclusion that

“the hypothesis Hy, = ‘no mistakes’ is rejected at the 1% level of significance”,

i.e. omne receives a precise answer to a different question. In fact, the meaning of the
previous statement is simply

“there is only a 1% probability that the average falls outside the selected interval,
if the calculations were done correctly”.

But this does not answer our natural question,'? i.e. that concerning the probability of

mistake, and not that of results far from the average if there were no mistakes. Moreover,
the statement sounds as if one would be 99% sure that the student has made a mistake!
This conclusion is highly misleading.

How is it possible, then, to answer the very question concerning the probability of mistakes?
If you ask the students (before they take a standard course in hypothesis tests) you will hear
the right answer, and it contains a crucial ingredient extraneous to the logic of hypothesis
tests:

“It all depends on who has made the calculation!”

In fact, if the calculation was done by a well-tested program the probability of mistake
would be zero. And students know rather well their probability of making mistakes.

Example 6: A bad joke to a journal.'3

12Personally, T find it is somehow impolite to give an answer to a question which is different from that asked.
At least one should apologize for being unable to answer the original question. However, textbooks usually do
not do this, and people get confused.

13Example taken from Ref. [12].
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A scientific journal changes its publication policy. The editors announce that results with
a significance level of 5% will no longer be accepted. Only those with a level of < 1% will
be published. The rationale for the change, explained in an editorial, looks reasonable and
it can be shared without hesitation: “We want to publish only good results.”

1000 experimental physicists, not convinced by this severe rule, conspire against the jour-
nal. Each of them formulates a wrong physics hypothesis and performs an experiment to
test it according to the accepted/rejected scheme.

Roughly 10 physicists get 1% significant results. Their papers are accepted and published.
It follows that, contrary to the wishes of the editors, the first issue of the journal under
the new policy contains only wrong results!

The solution to the kind of paradox raised by this example seems clear: The physicists
knew with certainty that the hypotheses were wrong. So the example looks like an odd
case with no practical importance. But in real life who knows in advance with certainty if
a hypothesis is true or false?

1.9 Statistical significance versus probability of hypotheses

The examples in the previous section have shown the typical ways in which significance tests
are misinterpreted. This kind of mistake is commonly made not only by students, but also by
professional users of statistical methods. There are two different probabilities:

P(H | “data”): the probability of the hypothesis H, conditioned by the observed data. This
is the probabilistic statement in which we are interested. It summarizes the status of
knowledge on H, achieved in conditions of uncertainty: it might be the probability that
the W mass is between 80.00 and 80.50 GeV, that the Higgs mass is below 200 GeV, or
that a charged track is a 7~ rather than a K™.

P(“data” | H): the probability of the observables under the condition that the hypothesis H
is true. For example, the probability of getting two consecutive heads when tossing a
regular coin, the probability that a W mass is reconstructed within 1 GeV of the true mass,
or that a 2.5 GeV pion produces a > 100 pC signal in an electromagnetic calorimeter.

Unfortunately, conventional statistics considers only the second case. As a consequence, since
the very question of interest remains unanswered, very often significance levels are incorrectly
treated as if they were probabilities of the hypothesis. For example, “H refused at 5% signifi-
cance” may be understood to mean the same as “H has only 5% probability of being true.”

It is important to note the different consequences of the misunderstanding caused by the
arbitrary probabilistic interpretation of confidence intervals and of significance levels. Measure-
ment uncertainties on directly measured quantities obtained by confidence intervals are at least
numerically correct in most routine cases, although arbitrarily interpreted. In hypothesis tests,
however, the conclusions may become seriously wrong. This can be shown with the following
examples.

Example 7: AIDS test.
An Italian citizen is chosen at random to undergo an AIDS test. Let us assume that the

MThis should not be confused with the probability of the actual data, which is clearly 1, since they have been
observed.
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1.9 Statistical significance versus probability of hypotheses

analysis used to test for HIV infection has the following performances:

P(Positive | HIV) 1, (1.11)
P(Positive | HIV) = 0.2%. (1.12)

Q

The analysis may declare healthy people ‘Positive’, even if only with a very small proba-
bility.

Let us assume that the analysis states ‘Positive’. Can we say that, since the probability of
an analysis error Healthy — Positive is only 0.2%, then the probability that the person is
infected is 99.8%? Certainly not. If one calculates on the basis of an estimated 100000 in-
fected persons out of a population of 60 million, there is a 55% probability that the person
is healthy!"™® Some readers may be surprised to read that, in order to reach a conclusion,
one needs to have an idea of how ‘reasonable’ the hypothesis is, independently of the data,
used: a mass cannot be negative; the spectrum of the true value is of a certain type; stu-
dents often make mistakes; physical hypotheses happen to be incorrect; the proportion of
Italians carrying the HIV virus is roughly 1 in 600. The notion of prior reasonableness of
the hypothesis is fundamental to the approach we are going to present, but it is something
to which physicists put up strong resistance (although in practice they often instinctively
use this intuitive way of reasoning continuously and correctly). In this report I will try
to show that ‘priors’ are rational and unavoidable, although their influence may become
negligible when there is strong experimental evidence in favour of a given hypothesis.

Example 8: Probabilistic statements about the 1997 HERA high-Q? events.
A very instructive example of the misinterpretation of probability can be found in the
statements which commented on the excess of events observed by the HERA experiments
at DESY in the high-Q? region. For example, the official DESY statement [13] was:!

“The two HERA experiments, H1 and ZEUS, observe an excess of events above ex-
pectations at high x (or M = \/x's), y, and Q*. For Q> > 15000 GeV? the joint
distribution has a probability of less than one per cent to come from Standard Model
NC DIS processes.”

Similar statements were spread out in the scientific community, and finally to the press.

For example, a message circulated by INFN stated (it can be understood even in Italian)
“La probabilita che gli eventi osservati siano una fluttuazione statistica & inferiore all’ 1%.”

Obviously these two statements led the press (e.g. Corriere della Sera, 23 Feb. 1998) to

15The result will be a simple application of Bayes’ theorem, which will be introduced later. A crude way to
check this result is to imagine performing the test on the entire population. Then the number of persons declared
Positive will be all the HIV infected plus 0.2% of the remaining population. In total 100000 infected and 120000
healthy persons. The general, Bayesian solution is given in Section 8.10.1

60One might think that the misleading meaning of that sentence was due to unfortunate wording, but this
possibility is ruled out by other statements which show clearly a quite odd point of view of probabilistic matter.
In fact the DESY 1998 activity report [14] insists that “the likelihood that the data produced are the result of
a statistical fluctuation ... is equivalent to that of tossing a coin and throwing seven heads or tails in a row”
(replacing ‘probability’ by ‘likelihood’ does not change the sense of the message). Then, trying to explain the
meaning of a statistical fluctuation, the following example is given: “This process can be simulated with a die. If
the number of times a die is thrown is sufficiently large, the die falls equally often on all faces, i.e. all six numbers
occur equally often. The probability for each face is exactly a sizth or 16.66%, assuming the die is not loaded.
If the die is thrown less often, then the probability curve for the distribution of the six die values is no longer a
straight line but has peaks and troughs. The probability distribution obtained by throwing the die varies about the
theoretical value of 16.66% depending on how many times it is thrown.”
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announce that scientists were highly confident that a great discovery was just around the

corner. 17

The experiments, on the other hand, did not mention this probability. Their published
results [15] can be summarized, more or less, as “there is a < 1% probability of observing
such events or rarer ones within the Standard Model”.

To sketch the flow of consecutive statements, let us indicate by SM “the Standard Model
is the only cause which can produce these events” and by tail the “possible observations
which are rarer than the configuration of data actually observed”.

1. Experimental result: P(data + tail | SM) < 1%.
2. Official statements: P(SM |data) < 1%.

3. Press: P(SM |data) 2 99%, simply applying standard logic to the outcome of step
2. They deduce, correctly, that the hypothesis SM (= hint of new physics) is almost
certain.

One can recognize an arbitrary inversion of probability. But now there is also something
else, which is more subtle, and suspicious: “why should we also take into account data
which have not been observed?”'® Stated in a schematic way, it seems natural to draw
conclusions on the basis of the observed data:

data — P(H |data),

although P(H | data) differs from P(data| H). But it appears strange that unobserved
data too should play a role. Nevertheless, because of our educational background, we are
so used to the inferential scheme of the kind

data — P(H | data + tail) ,

that we even have difficulty in understanding the meaning of this objection.

Let us consider a new case, conceptually very similar, but easier to understand intuitively.

Example 9: Probability that a particular random number comes from a generator.
The value = = 3.01 is extracted from a Gaussian random-number generator having y =0
and 0 = 1. It is well known that

P(|X| > 3) = 0.27%,

170ne of the odd claims related to these events was on a poster of an INFN exhibition at Palazzo delle Esposizioni
in Rome: “These events are absolutely impossible within the current theory ... If they will be confirmed, it will
imply that ... .” Some friends of mine who visited the exhibition asked me what it meant that “something
impossible needs to be confirmed”.

"®This is as if the conclusion from the AIDS test depended not only on P(Positive| HIV) and on the prior
probability of being infected, but also on the probability that this poor guy experienced events rarer than a
mistaken analysis, like sitting next to Claudia Schiffer on an international flight, or winning the lottery, or being
hit by a meteorite.

9T must admit I have fully understood this point only very recently, and I thank F. James for having asked,
at the end of the CERN lectures, if I agreed with the sentence “The probability of data not observed is irrelevant
in making inferences from an erperiment.” [10] I was not really ready to give a convincing reply, apart from a
few intuitions, and from the trivial comment that this does not mean that we are not allowed to use MC data
(strictly speaking, frequentists should not use MC data, as discussed in Section 8.1). In fact, in the lectures I did
not talk about ‘data+tails’, but only about ‘data’. This topic will be discussed again in Section 8.8.
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1.9 Statistical significance versus probability of hypotheses

but we cannot state that the value x has 0.27% probability of coming from that generator,
or that the probability that the observation is a statistical fluctuation is 0.27%. In this
case, the value comes with 100% probability from that generator, and it is at 100% a
statistical fluctuation. This example helps to illustrate the logical mistake one can make
in the previous examples. One may speak about the probability of the generator (let us call
it A) only if another generator B is taken into account. If this is the case, the probability
depends on the parameters of the generators, the observed value x and on the probability
that the two generators enter the game. For example, if B has p = 6.02 and ¢ = 1, it is
reasonable to think that

P(A|z =3.01) = P(B|z = 3.01) = 0.5. (1.13)

Let us imagine a variation of the example: The generation is performed according to an
algorithm that chooses A or B, with a ratio of probability 10 to 1 in favour of A. The
conclusions change: Given the same observed value z = 3.01, one would tend to infer that
x is most probably due to A. It is not difficult to be convinced that, even if the value is a
bit closer to the centre of generator B (for example = = 3.3), there will still be a tendency
to attribute it to A. This natural way of reasoning is exactly what is meant by ‘Bayesian’,
and will be illustrated in these notes.?’. It should be noted that we are only considering
the observed data (z = 3.01 or z = 3.3), and not other values which could be observed
(x > 3.01, for example)

I hope these examples might at least persuade the reader to take the question of principles
in probability statements seriously. Anyhow, even if we ignore philosophical aspects, there are
other kinds of more technical inconsistencies in the way the standard paradigm is used to test
hypotheses. These problems, which deserve extensive discussion, are effectively described in an
interesting American Scientist article [10].

At this point I imagine that the reader will have a very spontaneous and legitimate objection:
“but why does this scheme of hypothesis tests usually work?”. 1 will comment on this question
in Section 8.8, but first we must introduce the alternative scheme for quantifying uncertainty.

20As an exercise, to compare the intuitive result with what we will learn later, it may be interesting to try to
calculate, in the second case of the previous example (P(A)/P(B) = 10), the value z such that we would be in a
condition of indifference (i.e. probability 50% each) with respect to the two generators.
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Chapter 2

A probabilistic theory of
measurement uncertainty

“If we were not ignorant there would be no probability,

there could only be certainty. But our ignorance cannot

be absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Henri Poincaré)

2.1 Where to restart from?

In the light of the criticisms made in the previous chapter, it seems clear that we would be advised
to completely revise the process which allows us to learn from experimental data. Paraphrasing
Kant [16], one could say that (substituting the words in italics with those in parentheses):

“All metaphysicians (physicists) are therefore solemnly and legally suspended from their
occupations till they shall have answered in a satisfactory manner the question, how are
synthetic cognitions a priori possible (is it possible to learn from observations)?”

Clearly this quotation must be taken in a playful way (at least as far as the invitation to
suspended activities is concerned ... ). But, joking apart, the quotation is indeed more pertinent
than one might initially think. In fact, Hume’s criticism of the problem of induction, which
interrupted the ‘dogmatic slumber’ of the great German philosopher, has survived the subsequent
centuries.! We shall come back to this matter in a while.

'For example, it is interesting to report Einstein’s opinion [17] about Hume’s criticism: “Hume saw clearly that
certain concepts, as for example that of causality, cannot be deduced from the material of experience by logical
methods. Kant, thoroughly convinced of the indispensability of certain concepts, took them just as they are
selected — to be necessary premises of every kind of thinking and differentiated them from concepts of empirical
origin. I am convinced, however, that this differentiation is erroneous.” In the same Autobiographical Notes [17]
Einstein, explaining how he came to the idea of the arbitrary character of absolute time, acknowledges that “The
type of critical reasoning which was required for the discovery of this central point was decisively furthered, in my
case, especially by the reading of David Hume’s and Ernst Mach’s philosophical writings.” This tribute to Mach
and Hume is repeated in the ‘gemeinverstandlich’ of special relativity [18]: “Why is it necessary to drag down
from the Olympian fields of Plato the fundamental ideas of thought in natural science, and to attempt to reveal
their earthly lineage? Answer: In order to free these ideas from the taboo attached to them, and thus to achieve
greater freedom in the formation of ideas or concepts. It is to the immortal credit of D. Hume and E. Mach that
they, above all others, introduced this critical conception.” 1 would like to end this parenthesis dedicated to Hume
with a last citation, this time by de Finetti[11], closer to the argument of this chapter: “In the philosophical
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A probabilistic theory of measurement uncertainty

In order to build a theory of measurement uncertainty which does not suffer from the prob-
lems illustrated above, we need to ground it on some kind of first principles, and derive the
rest by logic. Otherwise we replace a collection of formulae and procedures handed down by
tradition with another collection of cooking recipes.

We can start from two considerations.

1. In a way which is analogous to Descartes’ cogito, the only statement with which it is
difficult not to agree — in some sense the only certainty — is that (see end of Section 1.1)

“the process of induction from experimental observations to statements about
physics quantities (and, in general, physical hypothesis) is affected, unavoidably,
by a certain degree of uncertainty”.

2. The natural concept developed by the human mind to quantify the plausibility of the
statements in situations of uncertainty is that of probability.?

In other words we need to build a probabilistic (probabilistic and not, generically, statistic)
theory of measurement uncertainty.

These two starting points seem perfectly reasonable, although the second appears to contra-
dict the criticisms of the probabilistic interpretation of the result, raised above. However this
is not really a problem, it is only a product of a distorted (i.e. different from the natural) view
of the concept of probability. So, first we have to review the concept of probability. Once we
have clarified this point, all the applications in measurement uncertainty will follow and there
will be no need to inject ad hoc methods or use magic formulae, supported by authority but not
by logic.

2.2 Concepts of probability

We have arrived at the point where it is necessary to define better what probability is. This is
done in Section 3.3. As a general comment on the different approaches to probability, I would
like, following Ref. [19], to cite de Finetti [11]:

“The only relevant thing is uncertainty - the extent of our knowledge and ignorance. The
actual fact of whether or not the events considered are in some sense determined, or known by
other people, and so on, is of no consequence. The numerous, different opposed attempts to
put forward particular points of view which, in the opinion of their supporters, would endow
Probability Theory with a ‘nobler status’, or a ‘more scientific’ character, or ‘firmer’ philo-
sophical or logical foundations, have only served to generate confusion and obscurity, and to
provoke well-known polemics and disagreements - even between supporters of essentially the
same framework.

The main points of view that have been put forward are as follows.

arena, the problem of induction, its meaning, use and justification, has given rise to endless controversy, which,

in the absence of an appropriate probabilistic framework, has inevitably been fruitless, leaving the major issues

unresolved. It seems to me that the question was correctly formulated by Hume ... and the pragmatists ... However,

the forces of reaction are always poised, armed with religious zeal, to defend holy obtuseness against the possibility

of intelligent clarification. No sooner had Hume begun to prise apart the traditional edifice, then came poor Kant

in a desperate attempt to paper over the cracks and contain the inductive argument — like its deductive counterpart
firmly within the narrow confines of the logic of certainty.”

ZPerhaps one may try to use instead fuzzy logic or something similar. T will only try to show that this way is
productive and leads to a consistent theory of uncertainty which does not need continuous injections of extraneous
matter. I am not interested in demonstrating the uniqueness of this solution, and all contributions on the subject
are welcome.
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2.2 Concepts of probability

The classical view is based on physical considerations of symmetry, in which one should
be obliged to give the same probability to such ‘symmetric’ cases. But which ‘symmetry’?
And, in any case, why? The original sentence becomes meaningful if reversed: the symme-
try is probabilistically significant, in someone’s opinion, if it leads him to assign the same
probabilities to such events.

The logical view is similar, but much more superficial and irresponsible inasmuch as it is
based on similarities or symmetries which no longer derive from the facts and their actual
properties, but merely from sentences which describe them, and their formal structure or
language.

The frequentistic (or statistical) view presupposes that one accepts the classical view, in that
it considers an event as a class of individual events, the latter being ‘trials’ of the former. The
individual events not only have to be ‘equally probable’, but also ‘stochastically independent’
... (these notions when applied to individual events are virtually impossible to define or
explain in terms of the frequentistic interpretation). In this case, also, it is straightforward,
by means of the subjective approach, to obtain, under the appropriate conditions, in perfectly
valid manner, the result aimed at (but unattainable) in the statistical formulation. It suffices
to make use of the notion of exchangeability. The result, which acts as a bridge connecting
the new approach to the old, has often been referred to by the objectivists as “de Finetti’s
representation theorem’.

It follows that all the three proposed definitions of ‘objective’ probability, although useless
per se, turn out to be useful and good as valid auxiliary devices when included as such in
the subjectivist theory.”

Also interesting is Hume’s point of view on probability, where concept and evaluations are neatly
separated. Note that these words were written in the middle of the 18th century [20].

“Though there be no such thing as Chance in the world; our ignorance of the real cause of
any event has the same influence on the understanding, and begets a like species of belief or
opinion.

There is certainly a probability, which arises from a superiority of chances on any side; and
according as this superiority increases, and surpasses the opposite chances, the probability
receives a proportionable increase, and begets still a higher degree of belief or assent to that
side, in which we discover the superiority. If a dye were marked with one figure or number of
spots on four sides, and with another figure or number of spots on the two remaining sides,
it would be more probable, that the former would turn up than the latter; though, if it had
a thousand sides marked in the same manner, and only one side different, the probability
would be much higher, and our belief or expectation of the event more steady and secure.
This process of the thought or reasoning may seem trivial and obvious; but to those who
consider it more narrowly, it may, perhaps, afford matter for curious speculation.

Being determined by custom to transfer the past to the future, in all our inferences; where the
past has been entirely regular and uniform, we expect the event with the greatest assurance,
and leave no room for any contrary supposition. But where different effects have been found
to follow from causes, which are to appearance exactly similar, all these various effects must
occur to the mind in transferring the past to the future, and enter into our consideration,
when we determine the probability of the event. Though we give the preference to that which
has been found most usual, and believe that this effect will exist, we must not overlook the
other effects, but must assign to each of them a particular weight and authority, in proportion
as we have found it to be more or less frequent.”
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2.3

Subjective probability

I would like to sketch the essential concepts related to subjective probability,® for the conve-
nience of those who wish to have a short overview of the subject, discussed in detail in Part
II. This should also help those who are not familiar with this approach to follow the scheme
of probabilistic induction which will be presented in the next section, and the summary of the
applications which will be developed in the rest of the notes.

Essentially, one assumes that the concept of probability is primitive, i.e. close to that
of common sense (said with a joke, probability is what everybody knows before going to
school and continues to use afterwards, in spite of what one has been taught*).

Stated in other words, probability is a measure of the degree of belief that any well-defined
proposition (an event) will turn out to be true.

Probability is related to the state of uncertainty, and not (only) to the outcome of repeated
experiments.

The value of probability ranges between 0 and 1 from events which go from false to true
(see Fig. 3.1 in Section 3.3.2).

Since the more one believes in an event the more money one is prepared to bet, the
‘coherent’ bet can be used to define the value of probability in an operational way (see
Section 3.3.2).

From the condition of coherence one obtains, as theorems, the basic rules of probability
(usually known as axioms) and the ‘formula of conditional probability’ (see Sections 3.4.2

and 8.3).

There is, in principle, an infinite number of ways to evaluate the probability, with the
only condition being that they must satisfy coherence. We can use symmetry arguments,
statistical data (past frequencies), Monte Carlo simulations, quantum mechanics® and so
on. What is important is that if we get a number close to one, we are very confident that
the event will happen; if the number is close to zero we are very confident that it will
not happen; if P(A) > P(B), then we believe in the realization of A more than in the
realization of B.

It is easy to show that the usual ‘definitions’ suffer from circularity® (Section 3.3.1), and
that they can be used only in very simple and stereotypical cases. In the subjective
approach they can be easily recovered as ‘evaluation rules’ under appropriate conditions.

3For an introductory and concise presentation of the subject see also Ref. [21].

4This remark — not completely a joke — is due to the observation that most physicists interviewed are
convinced that (1.3) is legitimate, although they maintain that probability is the limit of the frequency.

SWithout entering into the open problems of quantum mechanics, let us just say that it does not matter,
from the cognitive point of view, whether one believes that the fundamental laws are intrinsically probabilistic,
or whether this is just due to a limitation of our knowledge, as hidden variables a la Einstein would imply. If we
calculate that process A has a probability of 0.9, and process B 0.4, we will believe A much more than B.

6Concerning the combinatorial definition, Poincaré’s criticism [6] is remarkable:

“The definition, it will be said, is very simple. The probability of an event is the ratio of the number
of cases favourable to the event to the total number of possible cases. A simple example will show how
incomplete this definition is: ...

. We are therefore bound to complete the definition by saying ‘... to the total number of possible
cases, provided the cases are equally probable.” So we are compelled to define the probable by the
probable. How can we know that two possible cases are equally probable? Will it be by convention?
If we insert at the beginning of every problem an explicit convention, well and good! We then have
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2.3 Subjective probability

e Subjective probability becomes the most general framework, which is valid in all practical
situations and, particularly, in treating uncertainty in measurements.

e Subjective probability does not mean arbitrary”; on the contrary, since the normative
role of coherence morally obliges a person who assesses a probability to take personal
responsibility, he will try to act in the most objective way (as perceived by common
sense).

e The word ‘belief’ can hurt those who think, naively, that in science there is no place
for beliefs. This point will be discussed in more detail in Section 8.4. For an extensive
discussion see Ref. [22].

e Objectivity is recovered if rational individuals share the same culture and the same knowl-
edge about experimental data, as happens for most textbook physics; but one should
speak, more appropriately, of intersubjectivity.

e The utility of subjective probability in measurement uncertainty has already been recog-
nized® by the aforementioned ISO Guide [3], after many internal discussions (see Ref. [23]
and references therein):

“In contrast to this frequency-based point of view of probability an equally valid view-
point is that probability is a measure of the degree of belief that an event will occur ...
Recommendation INC-1 ... implicitly adopts such a viewpoint of probability.”

e In the subjective approach random variables (or, better, uncertain numbers) assume a more
general meaning than that they have in the frequentistic approach: a random number is
just any number in respect of which one is in a condition of uncertainty. For example:

1. if T put a reference weight (1 kg) on a balance with digital indication to the centi-
gramme, then the random variable is the value (in grammes) that I am expected to
read (X): 1000.00, 999.95 ... 1000.03 ... ?

2. if I put a weight of unknown value and I read 576.23 g, then the random value (in

grammes) becomes the mass of the body (p): 576.10, 576.12 ... 576.23 ... 576.50
.7

In the first case the random number is linked to observations, in the second to true values.

e The different values of the random variable are classified by a function f(z) which quantifies
the degree of belief of all the possible values of the quantity.

nothing to do but to apply the rules of arithmetic and algebra, and we complete our calculation, when
our result cannot be called in question. But if we wish to make the slightest application of this result,
we must prove that our convention is legitimate, and we shall find ourselves in the presence of the
very difficulty we thought we had avoided.”

"Perhaps this is the reason why Poincaré [6], despite his many brilliant intuitions, above all about the ne-
cessity of the priors (“there are certain points which seem to be well established. To undertake the calculation
of any probability, and even for that calculation to have any meaning at all, we must admit, as a point of de-
parture, an hypothesis or convention which has always something arbitrary on it ...), concludes to “.. have set
several problems, and have given no solution ...”. The coherence makes the distinction between arbitrariness and
‘subjectivity’ and gives a real sense to subjective probability.

80ne should feel obliged to follow this recommendation as a metrology rule. It is however remarkable to hear
that, in spite of the diffused cultural prejudices against subjective probability, the scientists of the ISO working
groups have arrived at such a conclusion.
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e All the formal properties of f(x) are the same as in conventional statistics (average, vari-
ance, etc.).

e All probability distributions are conditioned to a given state of information: in the exam-
ples of the balance one should write, more correctly,

flz) — f(z|p = 1000.00)
fw) — flple=576.23).

e Of particular interest is the special meaning of conditional probability within the frame-
work of subjective probability. Also in this case this concept turns out to be very natural,
and the subjective point of view solves some paradoxes of the so-called ‘definition’ of
conditional probability (see Section 8.3).

e The subjective approach is often called Bayesian, because of the central role of Bayes’
theorem, which will be introduced in Section 2.6. However, although Bayes’ theorem is
important, especially in scientific applications, one should not think that this is the only
way to assess probabilities. Outside the well-specified conditions in which it is valid, the
only guidance is that of coherence.

e Considering the result of a measurement, the entire state of uncertainty is held in f(u);
then one may calculate intervals in which we think there is a given probability to find
i, value(s) of maximum belief (mode), average, standard deviation, etc., which allow the
result to be summarized with only a couple of numbers, chosen in a conventional way.

2.4 Learning from observations: the ‘problem of induction’

Having briefly shown the language for treating uncertainty in a probabilistic way, it remains
now to see how one builds the function f(u) which describes the beliefs in the different possible
values of the physics quantity. Before presenting the formal framework we still need a short
introduction on the link between observations and hypotheses.

Every measurement is made with the purpose of increasing the knowledge of the person who
performs it, and of anybody else who may be interested in it. This may be the members of a
scientific community, a physician who has prescribed a certain analysis or a merchant who wants
to buy a certain product. It is clear that the need to perform a measurement indicates that one
is in a state of uncertainty with respect to something, e.g. a fundamental constant of physics or a
theory of the Universe; the state of health of a patient; the chemical composition of a product. In
all cases, the measurement has the purpose of modifying a given state of knowledge. One would
be tempted to say ‘acquire’, instead of ‘modify’, the state of knowledge, thus indicating that the
knowledge could be created from nothing with the act of the measurement. Instead, it is not
difficult to realize that, in all cases, it is just an updating process, in the light of new facts and of
some reason. Let us take the example of the measurement of the temperature in a room, using a,
digital thermometer — just to avoid uncertainties in the reading — and let us suppose that we
get 21.7°C. Although we may be uncertain on the tenths of a degree, there is no doubt that the
measurement will have squeezed the interval of temperatures considered to be possible before
the measurement: those compatible with the physiological feeling of ‘comfortable environment’.
According to our knowledge of the thermometer used, or of thermometers in general, there will
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2.5 Beyond Popper’s falsification scheme

be values of temperature in a given interval around 21.7 °C which we believe more and values
outside which we believe less.”

It is, however, also clear that if the thermometer had indicated, for the same physiological
feeling, 17.3 °C, we might think that it was not well calibrated. There would be, however, no
doubt that the instrument was not working properly if it had indicated 2.5 °C!

The three cases correspond to three different degrees of modification of the knowledge. In
particular, in the last case the modification is null.19

The process of learning from empirical observations is called induction by philosophers. Most
readers will be aware that in philosophy there exists the unsolved ‘problem of induction’, raised
by Hume. His criticism can be summarized by simply saying that induction is not justified, in
the sense that observations do not lead necessarily (with the logical strength of a mathematical
theorem) to certain conclusions. The probabilistic approach adopted here seems to be the only
reasonable way out of such a criticism.

2.5 Beyond Popper’s falsification scheme

People very often think that the only scientific method valid in physics is that of Popper’s
falsification scheme. There is no doubt that, if a theory is not capable of explaining experimental
results, it should be rejected or modified. But, since it is impossible to demonstrate with
certainty that a theory is true, it becomes impossible to decide among the infinite number
of hypotheses which have not been falsified. This would produce stagnation in research. A
probabilistic method allows, instead, for a scale of credibility to be provided for classifying all
hypotheses taken into account (or credibility ratios between any pair of hypotheses). This is
close to the natural development of science, where new investigations are made in the direction
which seems the most credible, according to the state of knowledge at the moment at which the
decision on how to proceed was made.

As far as the results of measurements are concerned, the falsification scheme is absolutely
unsuitable. Taking it literally, one should be authorized only to check whether or not the value
read on an instrument is compatible with a true value, nothing more. It is understandable then
that, with this premise, one cannot go very far.

We will show that falsification is just a subcase of the Bayesian inference.

2.6 From the probability of the effects to the probability of the
causes

The scheme of updating knowledge that we will use is that of Bayesian statistical inference,
widely discussed in the second part of this report (in particular Sections 3.4 and 5.2). 1 wish
to make a less formal presentation of it here, to show that there is nothing mysterious behind
Bayes’ theorem, and I will try to justify it in a simple way.

It is very convenient to consider true values and observed values as causes and effects (see
Fig. 2.1, imagining also a continuous set of causes and many possible effects). The process
of going from causes to effects it is called ‘deduction’.!’ The possible values 2 which may be

9To understand the role of implicit prior knowledge, imagine someone having no scientific or technical education
at all, entering a physics laboratory and reading a number on an instrument. His scientific knowledge will not
improve at all, apart from the triviality that a given instrument displayed a number (not much knowledge).

10But also in this case we have learned something: the thermometer does not work.

1To be correct, the deduction we are talking about is different from the classical one. We are dealing, in fact,
with probabilistic deduction, in the sense that, given a certain cause, the effect is not univocally determined.
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Figure 2.1: Deduction and induction.

observed are classified in belief by

flalp).

This function is called ‘likelihood’ since it quantifies how likely it is that g will produce any
given z. It summarizes all previous knowledge on that kind of measurement (behaviour of the
instruments, of influence factors, etc.  see list in Section 1.3). Often, if one deals only with
random error, the f(x|u) is a normal distribution around g, but in principle it may have any
form.

Once the likelihood is determined (we have the performance of the detector under control)
we can build f(u|x), under the hypothesis that = will be observed.'? In order to arrive at the
general formula in an heuristic way, let us consider only two values of u. If they seem to us equally
possible, it will seem natural to be in favour of the value which gives the highest likelihood that
a will be observed. For example, assuming pu; = —1, pus = 10, considering a normal likelihood
with ¢ = 3, and having observed x = 2, one tends to believe that the observation is most
likely caused by pi. If, on the other hand, the quantity of interest is positively defined, then
w1 switches from most probable to impossible cause; ps becomes certain. There are, in general,
intermediate cases in which, because of previous knowledge (see, e.g., Fig. 1.3 and related text),
one tends to believe a priori more in one or other of the causes. It follows that, in the light of
a new observation, the degree of belief of a given value of p will be proportional to

— the likelihood that p will produce the observed effect;
— the degree of belief attributed to p before the observation, quantified by fo(u).

We have finally:
flulz) oc fz|p) - fo(p).

This is one of the ways to write Bayes’ theorem.

121t is important to understand that f(u|x) can be evaluated before one knows the observed value x. In fact,
to be correct, f(u|x) should be interpreted as beliefs of p under the hypothesis that = is observed, and not only
as beliefs of p after z is observed. Similarly, f(z | x) can also be built after the data have been observed, although
for teaching purposes the opposite has been suggested, which corresponds to the most common case.

28 CERN 99-03, July 1999



2.7 Bayes’ theorem for uncertain quantities: derivation from a physicist’s point of view

2.7 Bayes’ theorem for uncertain quantities: derivation from a
physicist’s point of view

Let us show a little more formally the concepts illustrated in the previous section. This is proof

of the Bayes’ theorem alternative to the proof applied to events, given in Part II of these notes.

It is now applied directly to uncertain (i.e. random) quantities, and it should be closer to the

physicist’s reasoning than the standard proof. For teaching purposes I explain it using time
ordering, but this is unnecessary, as explained several times elsewhere.

e Before doing the experiment we are uncertain of the values of y and x: we know neither
the true value, nor the observed value. Generally speaking, this uncertainty is quantified

by f(x, p).

e Under the hypothesis that we observe x, we can calculate the conditional probability

flxp) [l p)
fl@) [ f(@p)du

e Usually we don’t have f(x, u), but this can be calculated by f(z|p) and f(p):

[ p) = f(xlp)- f(u).

flplz) =

e If we do an experiment we need to have a good idea of the behaviour of the apparatus;
therefore f(x|p) must be a narrow distribution, and the most imprecise factor remains
the knowledge about p, quantified by f(u), usually very broad. But it is all right that this
should be so, because we want to learn about p.

e Putting all the pieces together we get the standard formula of Bayes’ theorem for uncertain

Sl f)
JF@p) - f(p)du’

The steps followed in this proof of the theorem should convince the reader that f(u | x) calculated
in this way is the best we can say about p with the given status of information.

quantities:

fpx)

2.8 Afraid of ‘prejudices’? Inevitability of principle and fre-
quent practical irrelevance of the priors

Doubtless, many readers could be at a loss at having to accept that scientific conclusions may
depend on prejudices about the value of a physical quantity (‘prejudice’ currently has a negative
meaning, but in reality it simply means ‘scientific judgement based on previous experience’).
We shall have many opportunities to enter again into discussion about this problem, but it is
important to give a general overview now and to make some firm statements on the role of
priors.

e First, from a theoretical point of view, it is impossible to get rid of priors; that is if we want
to calculate the probability of events of practical interest, and not just solve mathematical
games.

e At a more intuitive level, it is absolutely reasonable to draw conclusions in the light of
some reason, rather than in a purely automatic way.
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e In routine measurements the interval of prior acceptance of the possible values is so large,
compared to the width of the likelihood (seen as a function of u), that, in practice, it is
as if all values were equally possible. The prior is then absorbed into the normalization
constant:

f@lp) - folp) [z p). (2.1)

PrioT very vague

e If, instead, this is not the case, it is absolutely legitimate to believe more in personal
prejudices than in empirical data. This could be when one uses an instrument of which
one is not very confident, or when one does for the first time measurements in a new field,
or in a new kinematical domain, and so on. For example, it is easier to believe that a
student has made a trivial mistake than to conceive that he has discovered a new physical
effect. An interesting case is mentioned by Poincaré [6]:

“The impossibility of squaring the circle was shown in 1885, but before that date all
geometers considered this impossibility as so ‘probable’ that the Académie des Sciences
rejected without examination the, alas! too numerous memoirs on this subject that a
few unhappy madmen sent in every year. Was the Académie wrong? Evidently not,
and it knew perfectly well that by acting in this manner it did not run the least risk
of stifling a discovery of moment. The Académie could not have proved that it was
right, but it knew quite well that its instinct did not deceive it. If you had asked the
Academicians, they would have answered: ‘We have compared the probability that an
unknown scientist should have found out what has been vainly sought for so long, with
the probability that there is one madman the more on the earth, and the latter has
appeared to us the greater.””

In conclusion, contrary to those who try to find objective priors which would give the
Bayesian theory a nobler status of objectivity, I prefer to state explicitly the naturalness and
necessity of subjective priors[22]. If rational people (e.g. physicists), under the guidance of
coherency (i.e. they are honest), but each with unavoidable personal experience, have priors
which are so different that they reach divergent conclusions, it just means that the data are still
not sufficiently solid to allow a high degree of intersubjectivity (i.e. the subject is still in the
area of active research rather than in that of consolidated scientific culture). On the other hand,
the step from abstract objective rules to dogmatism is very short [22].

Turning now to the more practical aspect of presenting a result, I will give some recommen-
dations about unbiased ways of doing this, in cases when priors are really critical (Section 9.2).
Nevertheless, it should be clear that:

e since the natural conclusions should be probabilistic statements on physical quantities,
someone has to turn the likelihoods into probabilities, and those who have done the ex-
periment are usually the best candidates for doing this;

e taking the spirit of publishing unbiased results — which is in principle respectable — to
extremes, one should not publish any result, but just raw data tapes.

2.9 Recovering standard methods and short-cuts to Bayesian
reasoning

Before moving on to applications, it is necessary to answer an important question: “Should one
proceed by applying Bayes’ theorem in every situation?” The answer is no, and the alternative
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is essentially implicit in (2.1), and can be paraphrased with the example of the dog and the
hunter.

We have already used this example in Section 1.7, when we were discussing the arbitrariness
of probability inversion performed unconsciously by (most of)!® those who use the scheme of
confidence intervals. The same example will also be used in Section 5.2.3, when discussing the
reason why Bayesian estimators appear to be distorted (a topic discussed in more detail in
Section 8.5). This analogy is very important, and, in many practical applications, it allows us
to bypass the explicit use of Bayes’ theorem when priors do not sizably influence the result (in
the case of a normal model the demonstration can be seen in Section 5.4.2).

Figure 2.2 shows how it is possible to recover standard methods from a Bayesian perspective.
One sees that the crucial link is with the Maximum Likelihood Principle, which, in this approach
is just a subcase (see Section 5.2.2). Then, when extra simplifying restrictions are verified, the
different forms of the Least Squares are reobtained. In conclusion:

e One is allowed to use these methods if one thinks that the approximations are valid;
the same happens with the usual propagation of uncertainties and of their correlations,
outlined in the next section.

e One keeps the Bayesian interpretation of the results; in particular, one is allowed to talk
about the probability distributions of the true values, with all the philosophical and prac-
tical advantages we have seen.

e Even if the priors are not negligible, but the final distribution is roughly normal,* one can
evaluate the expected value and standard deviation from the shape of the distribution, as

is well known:

%ﬁj":’” —0 = B(W)~ . (2.2)
5In f(u ) e
o . = =~ VarG) (2.3)

where pu,, stands for the mode of the distribution.

2.10 Evaluation of uncertainty: general scheme

Now that we have set up the framework, we can draw the general scheme to evaluate uncertainty
in measurement in the most general cases. For the basic applications we will refer to the “primer”
and to the appendix. For more sophisticated applications the reader is recommended to search
in specialized literature.

2.10.1 Direct measurement in the absence of systematic errors

The first step consists in evaluating the uncertainty on a quantity measured directly. The most
common likelihoods which describe the observed values are the Gaussian, the binomial and the
Poisson distributions.

13 Although T don’t believe it, I leave open the possibility that there really is someone who has developed some
special reasoning to avoid, deep in his mind, the category of the probable when figuring out the uncertainty on a
true value.

14T case of doubt it is recommended to plot it.
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Figure 2.2: Relation between Bayesian inference and standard data analysis methods. The top-down
flow shows subsequent limiting conditions. For an understanding of the relation between the ‘normal’ 2
and the Pearson x? Ref. [24] is recommended.
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Gaussian: This is the well-known case of ‘normally’ distributed errors. For simplicity, we will
only consider o independent of p (constant r.m.s. error within the range of measurability),
but there is no difficulty of principle in treating the general case. The following cases will
be analysed:

e inference on u starting from a prior much more vague than the width of the likelihood
(Section 5.4.1);

e prior width comparable with that of the likelihood (Section 5.4.2): this case also
describes the combination of independent measurements;

e observed values very close to, or beyond the edge of the physical region (Section
5.4.3);

e a method to give unbiased estimates will be discussed in Sections 9.2 and 9.2.1, but

at the cost of having to introduce fictitious quantities.

Binomial: This distribution is important for efficiencies and, in the general case, for making
inferences on unknown proportions. The cases considered include (see Section 5.5.1):

e general case with flat prior leading to the recursive Laplace formula (the problem
solved originally by Bayes);

e limit to normality;

e combinations of different datasets coming from the same proportion;

e upper and lower limits when the efficiency is 0 or 1;

e comparison with Poisson approximation.
Poisson: The cases of counting experiments here considered!® are (see Section 5.5.2):

e inference on A starting from a flat distribution;
e upper limit in the case of null observation;

e counting measurements in the presence of a background, when its rate is well known
(Sections 5.6.5 and 9.1.6);

e more complicated case of background with an uncertain rate (Section 5.6.5);

e dependence of the conclusions on the choice of experience-motivated priors (Section
9.1);

e combination of upper limits, also considering experiments of different sensitivity (Sec-
tion 9.1.3).

o cffect of possible systematic errors (Section 9.1.4);

e a special section will be dedicated to the lower bounds on the mass of a new hy-
pothetical particle from counting experiments and from direct information (Section
9.3).

5For a general and self-contained discussion concerning the inference of the intensity of Poisson processes at
the limit of the detector sensitivity, see Ref. [25].
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2.10.2 Indirect measurements

The case of quantities measured indirectly is conceptually very easy, as there is nothing to
‘think’. Since all values of the quantities are associated with random numbers, the uncertainty
on the input quantities is propagated to that of output quantities, making use of the rules of
probability. Calling p1, pe and us the generic quantities, the inferential scheme is:

f(p1]datay)
- datay,datas) . 9.4
fusg | datas) s —g(u1,p12) f(,ui’) | 1 2) ( )

The problem of going from the probability density functions (p.d.f.’s) of 1 and uo to that of
w3 makes use of probability calculus, which can become difficult, or impossible to do analytically,
if p.d.f.’s or g(p1, p2) are complicated mathematical functions. Anyhow, it is interesting to note
that the solution to the problem is, indeed, simple, at least in principle. In fact, f(us) is given,
in the most general case, by

fuz) = / J(p1) - fp2) - 0(yz — g(p, p2)) dprdpus, (2.5)

where §() is the Dirac delta function. The formula can be easily extended to many variables, or
even correlations can be taken into account (one needs only to replace the product of individual
p.d.f.’s by a joint p.d.f.). Equation (2.5) has a simple intuitive interpretation: the infinitesimal
probability element f(us3) dus depends on ‘how many’ (we are dealing with infinities!) elements
dpydps contribute to it, each weighed with the p.d.f. calculated in the point {u1,u2}. An
alternative interpretation of Eq. (2.5), very useful in applications, is to think of a Monte Carlo
simulation, where all possible values of p1 and po enter with their distributions, and correlations
are properly taken into account. The histogram of ug calculated from ps = g(p1, p2) will ‘tend’
to f(us3) for a large number of generated events.!®

In routine cases the propagation is done in an approximate way, assuming linearization of
g(p1, p2) and normal distribution of pz. Therefore only variances and covariances need to be
calculated. The well-known error propagation formulae are recovered (Section 2.10.4), but now
with a well-defined probabilistic meaning.

2.10.3 Systematic errors

Uncertainty due to systematic effects is also included in a natural way in this approach. Let us
first define the notation (i is the generic index):

o = {x1,79,...7y,} is the ‘n-tuple’ (vector) of observables Xj;

® = {1, 2, ln,} is the n-tuple of true values p;;

e h={hi,ha,...hy,} is the n-tuple of influence quantities H;.
By influence quantities we mean:

— all kinds of external factors which may influence the result (temperature, atmospheric
pressure, etc.);

16 As we shall see, the use of frequencies is absolutely legitimate in subjective probability, once the distinction
between probability and frequency is properly made. In this case it works because of the Bernoulli theorem, which
states that for a very large Monte Carlo sample “it is very improbable that the frequency distribution will differ
mauch from the p.d.f.” (This is the probabilistic meaning to be attributed to ‘tend’.)
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Figure 2.3: Model to handle the uncertainty due to systematic errors by the use of conditional probability.

— all calibration constants;
— all possible hypotheses upon which the results may depend (e.g. Monte Carlo parameters).

From a probabilistic point of view, there is no distinction between p and h: they are all con-
ditional hypotheses for the x, i.e. causes which produce the observed effects. The difference is
simply that we are interested in p rather than in h.17

There are alternative ways to ‘take into account the systematic effects in the final distribution
of u:

1. Global inference on f(u,h). We can use Bayes’ theorem to make an inference on p and h,
as described in Section 5.2.1:

z= f(u,h|z)= flplz).

This method, depending on the joint prior distribution f, (H’ h), can even model possible
correlations between p and h (e.g. radiative correction depending on the quantity of
interest).

2. Conditional inference (see Fig. 2.3). Given the observed data, one has a joint distribution

"For example, in the absence of random error the reading (X) of a voltmeter depends on the probed voltage
(V) and on the scale offset (Z): X =V — Z. Therefore, the result from the observation of X = z gives only a
constraint between V and Z:

V-Z==z.

If we know Z well (within unavoidable uncertainty), then we can learn something about V. If instead the prior
knowledge on V is better than that on Z we can use the measurement to calibrate the instrument.
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of u for all possible configurations of h:

z= f(plz,h).

Fach conditional result is reweighed with the distribution of beliefs of A, using the well-
known law of probability:

Flu)z) = / F(u) z.b) - F(R) d. (2.6)

3. Propagation of uncertainties. Essentially, one applies the propagation of uncertainty, whose
most general case has been illustrated in the previous section, making use of the follow-
ing model: One considers a raw result on raw values p R for some nominal values of the
influence quantities, i.e.

flpglz,hy);

then (corrected) true values are obtained as a function of the raw ones and of the possible
values of the influence quantities, i.e.

pi = pi(pig, h) -

The three ways lead to the same result and each of them can be more or less intuitive to different
people, and more less suitable for different applications. For example, the last two, which are
formally equivalent, are the most intuitive for HEP experimentalists, and it is conceptually
equivalent to what they do when they vary — within reasonable intervals — all Monte Carlo
parameters in order to estimate the systematic errors.'® The third form is particularly convenient
to make linear expansions which lead to approximated solutions (see Section 6.1).

There is an important remark to be made. In some cases it is preferable not to ‘integrate
over all h’s. Instead, it is better to report the result as f(u|{h}), where {h} stands for a subset
of h, taken at their nominal values, if: B

»19

e {h} could be controlled better by the users of the result (for example h; € {h} is a
theoretical quantity on which there is work in progress);

e there is some chance of achieving a better knowledge of {h} within the same experiment
(for example h; could be the overall calibration constant of a calorimeter);

e a discrete and small number of very different hypotheses could affect the result. For
example:

flag | Thy, O(a?),...)
flag | Tho, O(ag), o)

This is, in fact, the standard way in which this kind of result has been presented (apart
from the inessential fact that only best values and standard deviations are given, assuming
normality).

If results are presented under the condition of {h}, one should also report the derivatives of u
with respect to the result, so that one does not have to redo the complete analysis when the
influence factors are better known. A typical example in which this is usually done is the possible
variation of the result due to the precise values of the charm-quark mass. A recent example in
which this idea has been applied thoroughly is given in Ref. [26].

8But, in order to give a well-defined probabilistic meaning to the result, the variations must be performed
according to f(h), and not arbitrary.
94Integrate’ stands for a generic term which also includes the approximate method just described.
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2.10.4 Approximate methods

Of extreme practical importance are the approximate methods, which enable us not only to avoid
having to use Bayes’ theorem explicitly, but also to avoid working with probability distributions.
In particular, propagation of uncertainty, including due to statistical effects of unknown size, is
done in this way in all routine applications, as has been remarked in the previous section. These
methods are discussed in Chapter 6, together with some words of caution about their uncritical
use (see Sections 6.1.5, 6.2 and 6.3.2).
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